An Analytical Series DC Motor Model from Experimental Test Data

Clark Radcliffe, Professor

Mechanical Engineering Michigan State University East Lansing, MI 48864 radcliffe@egr.msu.edu

The Inverse Problem

- Given:
 - Manufacturer performance data
 - A conceptual model
- How do I generate an analytical model and its parameters that best match the real measured performance?

Physical Parameters

Motor electrical resistance R_m (Ohm) Motor constant K_m (*N-m/amp*) or (volt-sec/rad) Torque and back EMF Field saturation constant α , (NA) Viscous Drag coefficient, d_m (*N-m*-sec/rad), Coulomb Drag τ_m (*N-m*) Note no Aerodynamic drag

			Speed	Current	Speed	Model	Model	Drive	Torque	Total
Torque	Drive	Torque	Data	Data	Data	Drive	Torque	Error^2	Error^2	Error^
(ft-lb)	(volt)	(N-m)	(rpm)	(A)	(rad/s)	(v)	(N-m)	(ND)	(ND)	(ND)
2	25	2.71	4440	82	465.0	25.46	2.72	0.00034	6E-06	0.0003
3	25	4.07	4000	96	418.9	24.95	4.05	4.1E-06	2E-05	3E-05
4	25	5.42	3/20	112	389.6	25.19	5.46	5.6E-05	5E-05	0.000
5	25	6.78	3460	126	362.3	25.07	6.//	7.7E-06	2E-06	1E-05
6	25	8.14	3230	140	338.2	24.94	8.10	5.3E-06	2E-05	2E-05
/	25	9.49	3020	154	310.3	24.78	9.46	7.4E-05	1E-05	8E-05
0	25	12 20	2640	182	297.4	24.54	12 25	0.00034	1E-05	0.000
10	25	13 56	2560	196	268.1	24.05	13.66	8 7E-05	6E-05	0.000
12	25	16.27	2320	222	242.9	24.70	16.40	0.00014	6E-05	0.000
14	25	18.98	2160	246	226.2	24.93	18.98	7.8E-06	1E-07	8E-06
16	25	21.70	2010	272	210.5	25.22	21.86	7.5E-05	6E-05	0.000
19	25	25.76	1840	306	192.7	25.62	25.77	0.00062	1E-07	0.0006
		$Sum(E^{2}) = 0$								0.002
	$R_m =$	$R_m = 0.0322 \text{ Ohm}$ RMS(E) = 0.014								
	$d_m =$	$d_m = 0.0075 \text{ (N-m-s/rad)}$								
	$K_m = 0.0089 (N-m/A^2)$									
	$\alpha = 0.3881$									
	$\tau_d =$	-2.18	N-m							

